- Electronic Pressure Switches

E. Overview of electronic pressure switches

E.4. Menu-controlled electronic pressure switches

Special feature:

Switching point:
Overpressure protection:
Transistor outputs:
Variant:
Additional
analogue output:
Housing materials:
Sealing materials:
Thread:
Types:

All functions programmable from menu Switching state LEDs, display, coding, etc.
0 - 400 bar
Up to 2 x
Qty: 2, output current: max. 1.4 A
PNP

4-20 mA
Anodised aluminium and die-casted zinc NBR, FKM, EPDM
Female thread
0570

Electronic pressure switches with SoS technology

E.5. Electronic pressure switches, High-Performance series,
from page 122 hex 22 with 1 switch output

Special feature:
Switching point:
Overpressure protection:
Transistor outputs:
Variant:
Housing materials:
Sealing materials:
Thread:
Types:

Highest accuracy and long-term stability
0 - 600 bar
Up to $4 \times$
Qty: 1, maximum output current 0.5 A
PNP or NPN
Stainless steel 1.4305 (AISI 303)
All welded, without elastomer seal
Different male threads
0530, 0531, 0532, 0533
E.6. Electronic pressure switches, High-Performance series,
from page 126 hex 22 with 2 switching outputs

Special feature:
Switching point:
Overpressure protection:
Transistor outputs:
Variant:
Housing materials:
Sealing materials:
Thread:
Types:

Highest accuracy and long-term stability
0 - 600 bar
Up to $4 \times$
Qty: 2, maximum output current 0.5 A
PNP or NPN
Stainless steel 1.4305 (AISI 303)
All welded, without elastomer seal
Different male threads
0540, 0541, 0542, 0544, 0545, 0546
E.7. Accessories
from page 130

- Mating plugs
- Thread adapters
- Programming tools

Technical explanations for electronic pressure switches

What is an electronic pressure switch?

An electronic pressure switch converts the medium pressure which is present at the measuring cell into a digital, electrical switch signal (ON/OFF).
An electronic pressure switch is more complex than a mechanical pressure switch, and thus generally more expensive. As an electronic pressure switch has no moving parts (relative to each other), it usually has a much prolonged service life and provides a higher level of precision (depending on application). The hysteresis can be set over a wide range and virtually independently of the switching point.
Electronic pressure switches can also be equiped with additional functions, such as optical displays and menu control.

How does an electronic pressure switch work?

The pressure measuring cell fitted (1) has a membrane that is exposed to the pressure to be measured. Affixed to this membrane is a bridge circuit consisting of four ohmic resistors in the form of a Wheatstone bridge. The values of these resistors change proportionally to the pressure load present at the measuring cell or membrane. The bridge voltage of the measuring cell is amplified in the evaluation electronics (2) and processed digitally by a microcontroller (3).
Once the switching point or switch-back point is reached, the output transistor (4) closes or opens depending on the output function (normally open/closed contact).

SoS technology

In the silicone-on-sapphire technology, the substrate of the thin film measuring cell is synthetic sapphire. This has excellent mechanical and temperature stable properties and prevents undesired parasitic effects, thereby having a positive effect on accuracy and stability. In conjunction with a titanium membrane, this results in virtually unique coaction between the temperature coefficients of sapphire and titanium. This is because, unlike silicon and stainless steel, they are more closely matched and thus require only a low level of compensation. This also has a favourable effect on longterm stability.

"Oil-filled" stainless steel measuring cell"

In this measuring cell technology, the piezoresistive measuring cell is packaged within a metallic housing filled with fluorine oil. This means the measuring cell is virtually free of external mechanical stress. Fluorine oil has excellent characteristics in regards to temperature and ageing behaviour, and is not flammable and so fits perfectly for oxygen applications. It is not recommended for food applications.

Ceramic measuring cell / thick film technology

Ceramic thick film pressure measuring cells are made up of a sintered ceramic body. The ceramic body sleeve already has the key geometries for the subsequent pressure range. The membrane thickness required and thus, the pressure range required is established with grinding and lapping. The resistors are imprinted with thick film technology and interconnect to form a measuring bridge.

Adjustment range of switching point

 The pressure range within which the switching point of an electronic pressure switch can be set is called adjustment range. The switching point corresponds to the pressure value at which the electric circuit of the output is opened or closed.
Switching point accuracy and tolerances

The switching point accuracy of electronic pressure switches is specified by SUCO and relates to the full scale value (FS). The switching point tolerances specified by us are valid at room temperature (RT) and new state. The values can change as a result of temperature, ageing and application specific conditions. Switching points can either be set at the factory or by the customer on site (depending on model).

Hysteresis

Rising/falling switching point

The difference between the rising (upper) and falling (lower) switching points (refer to the figure) is known as hysteresis (switchback difference).

Our electronic pressure switches are a perfect fit to extremely low or high hysteresis.

Hysteresis is either set at the factory or by the customer on site (only the 0570 series). The hysteresis or switch-back point of all pressure switches can be set over almost the entire adjustment range.

Please ask about the possible setting ranges you may require.

The hysteresis specified in the data sheet is set if nothing is specified in the order.

Window function

In the window function, the switch signal is programmed such that it remains ON or OFF between two values. This means a defined pressure range can be monitored. This function is only possible on the 053X series.

Switching delay

Switch outputs can be programmed with a delay separately for switch-on and switchoff (depending on model).
Delays of up to several seconds are possible.

Operating/supply voltage

All electronic pressure switches work with DC voltage and have no galvanic isolation. Within the thresholds specified in the relevant data sheet, the supply voltage may change without influencing the output signal. In order to guarantee the functionality of an electronic pressure switch, the minimum operating voltage must be respected. The maximum operating voltage may not be exceeded to avoid damage on the electronics.

Output current

Depending on the model, electronic pressure switches have a maximum output current of 0.5 A to 1.4 A and therefore are also suitable for applications requiring relatively high control and switching currents.

Load

The output transistor is an open collector, i.e. the output must be wired with a load. The load limits the switching current and is selected according to the application.

Electronic pressure switches have protection from voltage peaks at the output, and are short-circuit proof. When inductive loads are switched (relays, motors, etc.), provision may have to be made for an additional electronic snubber to eliminate high voltage peaks. This is realised e.g. with flyback diodes, or even better with suppressor diodes or varistors.

Hysteresis

Connection types and output functions

There are essentially two different ways to connect the load or apparent ohmic resistance to electronic pressure switches:

PNP output / high-side / plus-switching

PNP output (plus-switching) is the most popular variant in Europe. Here the load is connected to the output of the switch and ground (GND as reference potential).

NPN output / low-side / minus-switching
For an NPN output (minus-switching), the load is connected to the switching output and to the positive line of the supply voltage (Uv+ as reference potential).

NO/NC

Electronic pressure switches are available as normally open (NO) or normally closed (NC) versions. Also refer to section M.0, page 14.

Temperature errors and ranges

The temperature (both of the medium and environment) generally has a significant influence on the accuracy of an electronic pressure switch. Electronic pressure switches are temperature compensated over a particular range corresponding to the typical application. This means that temperature errors within this temperature range are minimised by means of circuitry design and algorithms. The temperature error is added to the accuracy, and shown in the total error band of the electronic pressure switch, also called "butterfly graph". Outside the compensated temperature range, the maximum error is not defined, however the electronic pressure switch still functions. To prevent mechanical and electrical damage, electronic pressure switches may not be used beyond the threshold temperature ranges specified in the data sheet.

Service life and long-term stability
Service life information pertains to nominal conditions specified in the data sheet, and can vary considerably when a product is operated mechanically or electrically outside the specifications. Service life essentially depends on the used measuring cell technology.

Ageing is accelerated (or slowed) due to different factors - such as temperature, temperature change and reduction of mechanical forces. The occurrence of ageing does effect the total accuracy.

SUCO specifies long-term stability in accordance with DIN 16086 in relation to one year. Typically the influence of aging on the accuracy reduces with increasing operating duration. The information in the data sheet corresponds to the worst case scenario.

Resolution

The A/D resolution (analogue - digital) of an electronic pressure switch defines the smallest change of the analogue - digital analogue conversion which takes place by the signal processing of an electronic pressure switch. If for example 13-bit resolution is used for an electronic pressure switch with a 100 bar setting range, the smallest signal change is 8192 steps $\left(2^{13}\right)$. As state of the art a resolution of 12 bits and hence 4096 steps $\left(2^{12}\right)$ is typical. Therefore pressure changes of $100 \mathrm{bar} / 4096=0.024$ bar can be recorded.

Sampling rate

The sampling rate (or sampling frequency) defines the number of samples per time unit (typically in seconds or milliseconds) taken from an analogue signal and converted to a digital signal. The sampling rate is an indicator of how fast the output signal of an electronic pressure switch responds to the pressure change at the input.

Response time

The response or circuit time is shorter than 2 to 4 milliseconds (depending on model). The sum of A / D and D/A conversions, and the analogue and digital filters in the signal chain from the measuring bridge to the output, make up the response time. Filtering is used to suppress unwanted pressure peaks and electrical interference signals, and for good EMC characteristics.

CE mark

Electronic pressure switches from SUCO fall under the 2014/30/EU EMC Directive.
EC declarations of conformity have been issued for the electronic pressure switches are available on request or can be downloaded from our website. The relevant devices are denoted by a CE mark in our catalogue.

The Machinery Directive 2006/42/EC is not applicable, because our products are classed as components.

Our products are designed for Group 2 fluids based upon good engineering practise in line with Pressure Equipment Directive 2014/68/EU, meaning neither a declaration of conformation may be issued nor a CE mark affixed.

Generic standard	Test standard	Parameter(s)
Radio disturbance and immunity	EN 55016-2-1 EN 55016-2-3	60 dBuV
Radiated, high-frequency electromagnetic field immunity test	EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m} ; 80-2700 \mathrm{MHz}$, $3 \mathrm{~V} / \mathrm{m} ; 1400-2000 \mathrm{MHz}$, $1 \mathrm{~V} / \mathrm{m} ; 2000-2700 \mathrm{MHz}$
Immunity to conducted disturbances, induced by radio-frequency fields	EN 61000-4-6	$10 \mathrm{~V} ; 0.15-80 \mathrm{MHZ}$
Electrical fast transient / burst immunity test	EN 61000-4-4	$\pm 2 \mathrm{KV}$
Surge immunity test	EN 61000-4-5	$\pm 0.5 \mathrm{KV}$ (common) $\pm 0.5 \mathrm{KV}$ (differential)
Electrostatic discharge (ESD) immunity test	EN 61000-4-2	air: 8 KV with contact: 4 KV

Electromagnetic compatibility (EMC)

Electronic pressure switches from SUCO do comply to all important industrial EMC standards. The basis for the standards are the stricter thresholds for transient emissions in residential environments (EN 61000-6-3) and immunity for industrial environments (EN 61000-6-2).

Technical explanations for electronic pressure switches

Conversion chart for pressure units

Abbreviation for unit	Name of unit	Pa= N/m²	bar	Torr	lbf/in². PSI
$1 \mathrm{~Pa}=\mathrm{N} / \mathrm{m}^{2}$	Pascal	1	0.00001	0.0075	0.00014
1 bar	Bar	100000	1	750.062	14.5
$1 \mathrm{Torr}=1 \mathrm{~mm} \mathrm{Hg}$	Millimeters of mercury	133.322	0.00133	1	0.01934
$1 \mathrm{lbf} / \mathrm{in}^{2}=1 \mathrm{PSI}$	Pound-force per square inch	6894	0.06894	51.71	1

Conversion chart for temperature units

	K	${ }^{\circ} \mathrm{C}$	F
K	1	$\mathrm{~K}-273.15$	$9 / 5 \mathrm{~K}-459.67$
${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}+273.15$	1	$9 / 5^{\circ} \mathrm{C}+32$
F	$5 / 9(\mathrm{~F}+459.67)$	$5 / 9(\mathrm{~F}-32)$	1

Insulation strength

According to the latest specifications for immunity to surges and lightning protection, the following must be taken into account when testing insulation strength: With insulation test devices having an inner resistance exceeding 42 Ohm , the insulation strength of electronic pressure switches can be tested up to 500 VDC. All contacts must be tested short-circuited against the housing. For a specific threshold value of test voltage, the protective circuit for surge protection is activated without any defects arising within the circuit. In the process, the current may rise to a point at which an insulation strength fault is indicated. The recommendation therefore is to conduct the insulation test of the electronic pressure switch when it is removed, or independently of the overall system.

Medium compatibility

The specifications on medium compatibility in this catalogue pertain to the specific seal and housing materials as well as the used measuring cell technology and so cannot be generalised.

Titanium

Its high levels of mechanical resistance and the wide media compatibility - in particular to corrosive media - do make titanium the ideal material for measuring cells and membranes. It is not recommended for oxygen or hydrogen applications.

Stainless steel (1.4305 / AISI 303)

Stainless steel with broad level of media compatibility. Also suitable for oxygen and hydrogen applications.

Stainless steel (1.4404 / AISI 316L)

Stainless steel with broad level of media compatibility. Also suitable for chemical industry and sea water applications.

Oxygen and hydrogen

Country-specific safety requirements and application guidelines must be observed if the medium to be monitored is oxygen or hydrogen, such as DGUV accident prevention regulations (DGUV 500, Section 2.32 and BGI 617).

Please specify when ordering
 "for oxygen, oil and grease-free".

Pressure peak dampening

If required, our electronic pressure switches can also be fitted with a pressure snubber (pressure peak orifice) to protect the measuring cell against transient pressure loads such as pressure peaks due to the switching of valves, cavitation effects, etc. which can shorten life expectancy.

For liquid media, the hole of a pressure snubber cannot be chosen to be any small size. At low temperatures the viscosity of the media will increase. In a case of dropping pressure the media might remain in the cavity behind the snubber which might affect the functionality of the electronic pressure switch. Thus a bore diameter of 0.8 mm has been established.

Product information

The technical information in this catalogue is based upon fundamental testing during product development, as well as upon empirical values. The information cannot be used for all application scenarios.

Testing of the suitability of our products for a specific application (e.g. also the checking of material compatibilities) falls under the responsibility of the user. It may be the case that suitability can only be guaranteed with appropriate field testing.

Subject to technical changes.

Selection matrix for electronic pressure switches

Type / series		$\begin{aligned} & \text { O } \\ & \text { Hi } \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \text { in } \end{aligned}$	$\frac{0}{5}$	$\frac{\pi}{i n}$	$\begin{aligned} & \text { O} \\ & \text { N} \\ & \text { O} \end{aligned}$	$\stackrel{\circ}{\text { in }}$	$\begin{aligned} & 0 \\ & \underset{N}{0} \end{aligned}$	$$	$\begin{gathered} \underset{\sim}{n} \\ \underset{0}{2} \end{gathered}$	$\begin{gathered} \text { n } \\ \underset{0}{n} \end{gathered}$	$\begin{aligned} & \text { O} \\ & \text { in } \end{aligned}$	$\underset{\substack{\mathrm{i}}}{\overline{0}}$	$\underset{\sim}{\text { Nூ }}$	$$	$\xrightarrow[\sim]{n}$	¢
Page		109	109	113	113	117	120	125	125	125	125	129	129	129	129	129	129
Technology Measuring cell	ceramic / thick-film	\square	\square	\square	\square	\square	\square										
	titanium / SoS							\square									
Variants	NO	\square		\square		\square		\square	\square		\square						
	NC	\square	\square	\square	\square				\square		\square		\square	\square		\square	\square
	1 switching output	\square	\square	\square	\square	\square		\square	\square	\square	\square						
	2 switching outputs						\square					\square	\square	\square	\square	\square	\square
	PNP (High Side)	\square	\square	■	\square	■	\square	\square	\square			\square	\square	\square			
	NPN (Low Side)									\square	\square				\square	\square	\square
	analogue output 4-20 mA						\square										
Supply voltage	9.6-32 V	\square	\square	\square	\square			■	\square								
	$12-30 \mathrm{~V}$						\square										
	15-36V					\square											
Adjustment range	0-2 bar	\square	■	\square	\square												
	0-4 bar	\square	\square	■	\square												
	0-10 bar	\square															
	0-16 bar	\square	\square	\square	\square			\square									
	0-25 bar							\square									
	0-40 bar	\square	\square	\square	\square												
	0-100 bar	\square	\square	■	■	■	\square										
	$0-250$ bar					\square		■	\square	■	\square						
	0 - 400 bar						\square										
	0-600 bar							\square									
Switch point adjustability	at factory	\square	\square	\square	\square	\square	-	■	\square								
	by customer (on site)			\square	\square	\square	\square										
Hysteresis adjustability	at factory	\square	■	\square													
	by customer (on site)						\square										
	window mode (settable at factory)							\square	\square	\square	\square						
Max. overpressure	up to $2 x$	\square	\square	\square	■	■	\square										
	up to $4 \times$							\square									
Size	hex 22							\square	\square	■	\square						
	hex 24	\square	\square	\square	\square												
	A/F 30					\square											
	A/F 32						\square										
Housing material	zinc-plated steel					\square											
	stainless steel 1.4305 / AISI 303	\square	\square	\square	\square			\square									
	aluminium / die-casted zinc						\square										
Additional functions	7-segment and menu control						\square										
	LED switching state indicator	\square	\square	\square	\square		\square										

E. 1
hex 24
Performance adjustable at factory

Electronic pressure switches, Performance series

hex 24, adjustable at factory

- Very attractively priced electronic pressure switches, particularly for high volume deployment
- High overpressure protection (up to $2 x$)
- Small, compact electronic switches
- Broad diversity of electronic and mechanical connection options
- High level of adaptability to your requirements (custom solutions)
- Ceramic sensor in thick film technology
- Housing made of stainless steel (1.4305), others on request
- Hysteresis adjustable within a wide range ($2 \%-98 \%$, set at factory)

Technical details

Type:		$\begin{aligned} & 0500 \text { NO } \\ & 0501 \text { NC } \end{aligned}$						
Transistor output:		PNP output (High-Side N-channel)						
Supply voltage:		9.6 - 32 VDC with reverse voltage protection						
Output current:		0.5 A with short-circuit and overvoltage protection						
Idle power consumption:		$<30 \mathrm{~mA}$						
Adjustment range $\mathrm{p}_{\text {nom }}$:		$0-2$ bar	0-4 bar	$0-10$ bar	$0-16$ bar	$0-40$ bar	$0-100$ bar	0-250 bar
Max. overpressure ${ }^{1)}$:		4 bar	10 bar	20 bar	40 bar	100 bar	150 bar	375 bar
Burst pressure ${ }^{11}$:		8 bar	20 bar	35 bar	60 bar	140 bar	300 bar	500 bar
Mechanical life expectancy:		5,000,000 pulsations at rise rates to $1 \mathrm{bar} / \mathrm{ms}$ at $\mathrm{p}_{\text {nom }}$						
Pressure rise:		$\leq 1 \mathrm{bar} / \mathrm{ms}$						
Accuracy:		± 0.5 \% of adjustment range $\mathrm{p}_{\text {nom }}$ (full scale (FS)) at room temperature						
Switching point adjustment range:		$3 \ldots 100 \%$ of adjustment range $\mathrm{p}_{\text {nom }}(\mathrm{FS})$, set at factory						
Hysteresis:		$2 \ldots 98 \% \mathrm{FS}$, programmable at factory (max. tolerance $\pm 1.0 \%$ of adjustment range $\mathrm{p}_{\text {nom }}$)						
Default-Hysterese		2 bar	4bar	10 bar	16 bar	40 bar	100 bar	250 bar
		0.1 bar	0.2 bar	0.5 bar	0.8 bar	2 bar	5bar	10 bar
Resolution:		0.2 \% of adjustment range $\mathrm{p}_{\text {nom }}$ (FS)						
Long term stability:		± 0.1 \% of adjustment range $\mathrm{p}_{\text {nom }}$ (FS) per year						
Repeatability ${ }^{2}$:		± 0.1 \% of adjustment range $\mathrm{p}_{\text {nom }}$ (FS)						
Switching time:		$<4 \mathrm{~ms}$						
Temperature error ${ }^{22}$:		$\pm 0.04 \%$ of adjustment range $\mathrm{p}_{\text {nom }}(\mathrm{FS}) /{ }^{\circ} \mathrm{C}$						
Compensated temperature range:		$0^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F} \ldots 158^{\circ} \mathrm{F}\right)$, total error $\leq 2 \%$						
Temperature range ambient:		$-30^{\circ} \mathrm{C} \ldots+100^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F} \ldots 212^{\circ} \mathrm{F}\right)$						
Temperature range media:		with TPE seal: $\quad-30^{\circ} \mathrm{C} \ldots+110^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F} \ldots+230^{\circ} \mathrm{F}\right)$						
		with NBR seal: $\quad-30^{\circ} \mathrm{C} \ldots+100^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F} \ldots+212^{\circ} \mathrm{F}\right)$						
		with EPDM seal: $\quad-30^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F} \ldots+257^{\circ} \mathrm{F}\right)$						
		with FKM seal: $\quad-20^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F} \ldots+257^{\circ} \mathrm{F}\right)$						
Wetted parts material	Housing:	Stainess steel (1.4305 / AISI 303)						
	Messuring cell:	Ceramic						
	Seal material:	TPE, NBR, EPDM or FKM						
Insulation resistance:		> $100 \mathrm{M} \Omega(500 \mathrm{VDC}, \mathrm{Ri}>42 \Omega)$						
Vibration resistance:		20 g ; at 4... 2000 Hz sine wave, DIN EN 60068-2-6						
Shock resistance:		$500 \mathrm{~m} / \mathrm{s}^{2}, 11 \mathrm{~ms}$ half sine wave; DIN EN 60068-2-27						
Protection class:		IP65: DIN EN 175301-803-A IP67: M12x1, AMP-Superseal ${ }^{\oplus}$, cable connector IP67 and IP6K9K: Bayonet ISO 15170-A1-4.1, Deutsch DT04-3P						
Electromagnetic compatibility:		EMV 2014/30/EU, EN 61000-6-2:2005, EN 61000-6-3:2007						
Cable output thread size:		For DIN EN 175301: Pg9 (outside diameter of cable 6 to 9 mm)						
Weight:		approx. 80 g (DIN EN 175301 approx. 110 g)						

[^0]
E. 1

hex 24
Performance
adjustable at factory

0500 / 0501

Electrical connectors and threads

DIN EN 175301-803-A	
Pin	Assignment
1	Uv+
2	Gnd
3	$\cup_{\text {out }}$
PE	(1)
IP65	
$\mathbf{x} \sim 60 \mathrm{~mm}$ without coupler socket $\mathbf{x} \sim 77 \mathrm{~mm}$ with coupler socket	
Order number: 013	

Pin	Assignment
1	Uv+
2	nc
3	Gnd
4	$U_{\text {out }}$
IP67	
$\mathbf{x} \sim 54 \mathrm{~mm}$	
Order number: 002	

Pin	Assignment
1	Uv+
2	Gnd
3	Out
4	nc
IP67, IP6K9K	
$\mathbf{x} \sim 56 \mathrm{~mm}$	
Order number: 004	

| Kabel-Anschluss |
| :---: | :---: |

0500 / 0501

Order matrix for electronic pressure switches

1) Please state switching point and hysteresis when ordering
${ }^{2)}$ Static pressure, dynamic pressure 30 to 50% lower. Values refer to the hydraulic or pneumatic part of the electronic pressure switch.
hex 24
Performance
adjustable at factory
E. 2
hex 24
Performance
adjustable by user

Electronic pressure switches, Performance series

hex 24, adjustable by user

Technical details

Type:		$\begin{aligned} & 0510 \text { NO } \\ & 0511 \text { NC } \end{aligned}$						
Transistor output:		PNP output (High-Side N-channel)						
Supply voltage:		$9.6-32 \mathrm{VDC}$ with reverse voltage protection						
Output current:		0.5 A with short-circuit and overvoltage protection						
Idle power consumption:		$<30 \mathrm{~mA}$						
Adjustment range $\mathrm{p}_{\text {nom }}$:		$0-2$ bar	$0-4$ bar	0-10 bar	0-16 bar	0-40 bar	$0-100 \mathrm{bar}$	$0-250$ bar
Max. overpressurel':		4 bar	10 bar	20 bar	40 bar	100 bar	150 bar	375 bar
Burst pressure ${ }^{1 /}$:		8 bar	20 bar	35 bar	60 bar	140 bar	300 bar	500 bar
Mechanical life expectancy:		5,000,000 pulsations at rise rates to $1 \mathrm{bar} / \mathrm{ms}$ at $\mathrm{p}_{\text {nom }}$						
Pressure rise:		$\leq 1 \mathrm{bar} / \mathrm{ms}$						
Accuracy:		$\pm 0.5 \%$ of adjustment range $\mathrm{p}_{\text {nom }}$ (full scale (FS)) at room temperature						
Switching point adjustment range:		3 ... 100% of adjustment range $\mathrm{p}_{\text {nom }}$ (FS), set at factory						
Hysteresis:		$2 \ldots 98 \% \mathrm{FS}$, programmable at factory (max. tolerance $\pm 1.0 \%$ of adjustment range $\mathrm{p}_{\text {nom }}$)						
Default-Hysterese		2 bar	4 bar	10 bar	16 bar	40 bar	100 bar	250 bar
		0.1 bar	0.2 bar	0.5 bar	0.8 bar	2 bar	5 bar	10 bar
Resolution:		0.2% of adjustment range $\mathrm{p}_{\text {nom }}$ (FS)						
Long term stability:		± 0.1 \% of adjustment range $\mathrm{p}_{\text {nom }}$ (FS) per year						
Repeatability ${ }^{2}$):		± 0.1 \% of adjustment range $\mathrm{p}_{\text {nom }}$ (FS)						
Switching time:		< 4 ms						
Temperature error ${ }^{2}$):		$\pm 0.04 \%$ of adjustment range $\mathrm{p}_{\text {nom }}(\mathrm{FS}) /{ }^{\circ} \mathrm{C}$						
Compensated temperature range:		$0^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F} \ldots 158^{\circ} \mathrm{F}\right)$, total error $\leq 2 \%$						
Temperature range ambient:		$-30^{\circ} \mathrm{C} \ldots+100^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F} \ldots 212^{\circ} \mathrm{F}\right)$						
Temperature range media:		with TPE seal: $\quad-30^{\circ} \mathrm{C} \ldots+110^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F} \ldots+230^{\circ} \mathrm{F}\right)$						
		with NBR seal: $\quad-30^{\circ} \mathrm{C} \ldots+100^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F} \ldots+212^{\circ} \mathrm{F}\right)$						
		with EPDM seal: $\quad-30^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F} \ldots+257^{\circ} \mathrm{F}\right)$						
		with FKM seal: $\quad-20^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F} \ldots+257^{\circ} \mathrm{F}\right)$						
Wetted parts material	Housing:	Stainess steel (1.4305 / AISI 303)						
	Messuring cell:	Ceramic						
	Seal material:	TPE, NBR, EPDM or FKM						
Insulation resistance:		> $100 \mathrm{M} \Omega(500 \mathrm{VDC}, \mathrm{Ri}>42 \Omega)$						
Vibration resistance:		20 g ; at 4... 2000 Hz sine wave, DIN EN 60068-2-6						
Shock resistance:		$500 \mathrm{~m} / \mathrm{s}^{2}, 11 \mathrm{~ms} \mathrm{half} \mathrm{sine} \mathrm{wave;} \mathrm{DIN} \mathrm{EN} \mathrm{60068-2-27}$						
Protection class:		IP65: DIN EN 175301-803-A IP67: M12x1, AMP-Superseal ${ }^{\oplus}$, cable connector IP67 and IP6K9K: Bayonet ISO 15170-A1-4.1, Deutsch DT04-3P						
Electromagnetic compatibility:		EMV 2014/30/EU, EN 61000-6-2:2005, EN 61000-6-3:2007						
Cable output thread size:		For DIN EN 175301: Pg9 (outside diameter of cable 6 to 9 mm)						
Weight:		approx. 80 g (DIN EN 175301 approx. 110 g)						

[^1]
E. 2

hex 24
Performance
adjustable by user

0510/0511

Electrical connectors and threads

ISO 15170-A1-4.1	
Pin	Assignment
1	Uv+
2	Gnd
3	Out
4	nc
IP67, IP6K9K	
$\mathbf{x} \sim 56 \mathrm{~mm}$	
Order number: 004	

0510/0511

Order matrix for electronic pressure switches
hex 24
Performance adjustable by user

DIN EN 175301-803-A (DIN 43650-A) coupler socket included in delivery		013	
M 12x1 - DIN EN 61076-2-101-A			002
Bayonet ISO 15170-A1-4.1 (DIN 72585-A1-4.1)		004	
AMP Superseal 1.5			
Deutsch DT04-3P			007
	\downarrow	\downarrow	\downarrow
Order number:	05XX	XXX	XX

[^2]E. 3
hex 27 / 30 A/F adjustable by user

Electronic pressure switches

hex 27 and 30 A/F, adjustable by user

- Ceramic sensor in thick film technology
- High overpressure protection to 500 bar
- Easy adjustment of switching point from the outside using set screw
- Hysteresis available within broad range (2\%-95\%, set at factory)
- Very high switching currents (to 1.4 A)

Technical details

Type:		0520 NO or NC		
Transistor output:		PNP output (High-Side N-channel)		
Supply voltage:		15-36 VDC		
Output current:		1.4 A transistor output (PNP, DC12) with short-circuit and overvoltage protection		
Idle power consumption:		$<15 \mathrm{~mA}$		
Adjustment range $\mathrm{p}_{\text {nom }}$:		$0-10 \mathrm{bar}$	0-100 bar	0-250 bar
Max. overpressure ${ }^{1)}$:		20 bar	150 bar	500 bar
Burst pressure ${ }^{11}$:		25 bar	175 bar	600 bar
Mechanical life expectancy:		5,000,000 switching cycles in adjustment range at $\mathrm{p}_{\text {nom }}$		
Pressure rise:		$\leq 1 \mathrm{bar} / \mathrm{ms}$		
Accuracy:		± 0.5 \% of adjustment range $\mathrm{p}_{\text {nom }}$ (full scale (FS)) at room temperature		
Switching point adjustment range:		$2 \ldots 100 \%$ of adjustment range $\mathrm{p}_{\text {nom }}$ (FS), set from outside using set screw		
Hysteresis:		$2 \ldots 95 \%$ FS, programmable at factory (max. tolerance $\pm 1.0 \%$ of adjustment range)		
Standard hysteresis without order specification:		approx. 0.5 bar	approx. 5 bar	approx. 10 bar
Resolution:		0.15 \% of adjustment range $\mathrm{p}_{\text {nom }}$ (FS)		
Long term stability:		± 0.1 \% of adjustment range $\mathrm{p}_{\text {nom }}$ (FS) per year		
Repeatability ${ }^{2}$):		$\pm 0.1 \%$ of adjustment range $\mathrm{p}_{\text {nom }}$ (FS)		
Switching time:		$<4 \mathrm{~ms}$		
Temperature error ${ }^{2}$):		$\pm 0.04 \%$ of adjustment range $\mathrm{p}_{\text {nom }}(\mathrm{FS}) /{ }^{\circ} \mathrm{C}$		
Compensated temperature range:		$0^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F} \ldots 158^{\circ} \mathrm{F}\right) \text {, total error } \leq \pm 2 \%$		
Temperature range ambient:		$-30^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F} \ldots 178{ }^{\circ} \mathrm{F}\right)$		
Temperature range media:		with NBR seal: $\quad-30^{\circ} \mathrm{C} \ldots+100^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F} \ldots+212^{\circ} \mathrm{F}\right)$		
		with EPDM seal: $\quad-30^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F} \ldots+257^{\circ} \mathrm{F}\right)$		
		with FKM seal: $\quad-20^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F} \ldots+257^{\circ} \mathrm{F}\right)$		
Wetted parts material	Housing:	zinc-plated steel		
	Measuring cell:	Ceramic		
	Seal material:	NBR, EPDM or FKM		
Insulation resistance:		> $100 \mathrm{M} \Omega(500 \mathrm{VDC}, \mathrm{Ri}>42 \Omega)$		
Vibration resistance:		10 g at $4 \ldots 2000 \mathrm{~Hz}$ sine wave; DIN EN 60068-2-6		
Shock resistance:		$294 \mathrm{~m} / \mathrm{s}^{2} ; 11 \mathrm{~ms}$ half sine wave; DIN EN 60068-2-27		
Protection class:		IP65: (DIN EN 175301-803-A); IP67: (M12x1)		
Electromagnetic compatibility:		EMC 2014/30/EU, EN 61000-6-2:2005, EN 61000-6-3:2007		
Weight:		approx. 240 g		

[^3]
E. 3

hex 27 / 30 A/F adjustable by user

DIN EN 175301-803-A (DIN 43650-A)	
Pin	Assignment
1	Uv+
2	Gnd
3	$\cup_{\text {out }}$
PE	PE
```IP65 Cable output Pg9 (outside diameter of cable 6 to 9 mm```	
Order number: 001	




## 0520

Order matrix for electronic pressure switches


Adjustment range ${ }^{1)}$ for NO

0 - 10 bar (approx. 145 PSI)	$\mathbf{4 7 0}$
0 - 100 bar (approx. 1450 PSI)	$\mathbf{4 7 2}$
0 - 250 bar (approx. 3620 PSI)	$\mathbf{4 7 4}$

Adjustment range ${ }^{1)}$ für NC

$0-10$ bar (approx. 145 PSI$)$ 471   $0-100$ bar (approx. 1450 PSI) 473   $0-250$ bar (approx. 3620 PSI) 475

Seal material - Application areas

NBR	Hydraulic/machine oil, heating oil, air, nitrogen, etc.	1
EPDM	Bremsflüssigkeit, Ozon, Azetylen, Wasserstoff usw.	2
FKM	Hydraulic fluids (HFA, HFB, HFD), petrol/gasoline, etc.	3

## Electrical connection

DIN EN 175301-803-A (DIN 43650-A) ; socket device included		001	
M 12x1 - DIN EN 61076-2-101-A			002
	$\downarrow$	$\downarrow$	$\downarrow$
Order number:	0520	$47 X$	XX

Also available factory adjusted. If you require factory adjustment, please state switching point and hysteresis when ordering.

[^4]hex 27 / 30 A/F adjustable by user
E. 4
menu-controlled

## Menu-controlled electronic pressure switches <br> display



- Menu-controlled, simple programming of switching functions
- 2 switching outputs and 1 analogue output
- Numerous programming functions, such as
- switching time delay
- zero point reset
- peak value memory
- switching point counter
- Current pressure value and switching states shown on 3-digit display
- Very high switching currents up to 1.4 A


## Technical details

Type:		0570 Electronic pressure switches
Switching function:		NC/NO, programmable, 2 switching points, switching time delay, zero point reset, peak value memory (within adjustment range), switching point counter
Settings:		Programmable using keypad on front
Outputs:		2 transistor outputs (each 1.4 A DC12 / PNP) 1 analogue output (4-20mA)
Supply voltage $U_{B}$ :		$12-30 \mathrm{VDC}$
Switching status display:		2 LEDs (yellow)
Pressure display:		Current pressure displayable in bar or PSI on 3-digit LED (red)
Life expectancy:		5,000,000 pulsations at rise rates to $1 \mathrm{bar} / \mathrm{ms}$ at $\mathrm{p}_{\text {nom }}$
Pressure rise rate:		$\leq 1 \mathrm{bar} / \mathrm{ms}$
Switching time:		$<4 \mathrm{~ms}$
Switching time delay:		Adjustable between 0 and 3.0 s
Hysteresis:		$1-99 \%$ FS, programmable from keypad
Accuracy:		$\pm 0.5$ \% (FS at room temperature)
Accuracy, display:		$\pm 0.5$ \% (FS at room temperature) $\pm 2$ digits
Temperature drift:		$\pm 0.2$ / / $10^{\circ} \mathrm{C}$
Temperature range:		NBR, EPDM, FKM -20 ${ }^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
Compensated temperature range:		$0^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F} \ldots 158{ }^{\circ} \mathrm{F}\right)$, total error $\leq \pm 2 \%$
Housing material:		die-casted zinc
Wetted parts material	Housing:	zinc-plated steel
	Measuring cell:	Ceramic
	Seal material:	NBR, EPDM or FKM
Vibration resistance:		10 g at 5 ... 2000 Hz sine wave; DIN EN 60068-2-6
Shock resistance:		$294 \mathrm{~m} / \mathrm{s}^{2}$; 11 ms half sine wave; DIN EN 60068-2-27
Protection class:		IP65
EMV:		acc. to EN 50081-1, EN 50081-2, EN 50082-2
Weight:		approx. 340 g
Access pin:		The switch can be protected with a pin between 1 and 999

## E. 4

menu-controlled

## 0570

Electronic pressure switches

- Anodised aluminium and die-casted zinc
- Ceramic measuring cell in thick-film technology
- Supply voltage 12 ... 30 VDC
- Overpressure protection to 20 / 150 / 600 bar $^{11)}$
- Programmable using keypad on front
- Switching time delay (setting from 0 to 3 s )
- Peak value memory (within the measurement range)
- Pin protection possible to prevent misuse
- Socket device included

pmax.   in bar	Burst pressure   in bar	Adjustment   range in bar	Thread	Order number:

0570 Electronic switches

| $20^{1)}$ | 25 | $0-10$ | $G 1 / 4$ female |
| :---: | :---: | :---: | :---: | | $0570-46714-X-001$ |  |
| :---: | :---: |
| $150^{1)}$ | 175 |
| $600^{1)}$ | 700 | | $0570-46814-X-001$ |
| :---: | :---: |
| $0570-46914-X-001$ |

## Seal material - Application areas

NBR	Hydraulic/machine oil, heating oil, air, nitrogen, etc.	1
EPDM	Bremsflüssigkeit, Wasserstoff, Ozon, Azetylen, usw.	2
FKM	Hydraulic fluids (HFA, HFB, HFD), petrol/gasoline, etc.	3

Refer to page 119 for the temperature range and application thresholds of sealing materials

Wiring chart


[^5][^6]E. 5
hex 22
High Performance
1 switching output

## Electronic pressure switches, High-Performance series

hex 22 with one switching output

- Outstanding overpressure protection (up to 4 x )
- Ideal choice for mobile hydraulic applications
- Long service life even under high pressure change rates
- Wetted parts made of stainless steel and titanium ensuring excellent media compatibility
- All welded design, no elastomeric seal
- Silicon-on-sapphire technology (SoS) for highest reliability, accuracy and reliable process monitoring
- Very low temperature error and very good long-term stability
- Adjustment of switching point and hysteresis at factory


## Technical details

Type	$\begin{aligned} & 0530 \text { NO } \\ & 0531 \text { NC } \end{aligned}$			$\begin{aligned} & 0532 \text { NO } \\ & 0533 \text { NC } \end{aligned}$	
Number of transistor outputs:	1 PNP output (High Side N-channel MOSFET)			1 NPN output (Low Side N-channel MOSFET)	
Supply voltage:	$9.6-32 \mathrm{VDC}$				
Idle power consumption:	$<15 \mathrm{~mA}$				
Standard adjustment range $\mathrm{p}_{\text {nom }}$ :	0-10 bar	0-25 bar	0-100 bar	0-250 bar	0-600 bar
Overpressure protection $\mathrm{p}^{\text {1 }}{ }^{1)}$ :	40 bar	100 bar	400 bar	1,000 bar	1,650 bar
Burst pressure ${ }^{1)}$ :	80 bar	200 bar	800 bar	2,000 bar	2,000 bar
Mechanical life expectancy:	10,000,000 pulsations at rise rates to $5 \mathrm{bar} / \mathrm{ms}$ at $\mathrm{p}_{\text {nom }}$				
Permitted pressure change rate:	$\leq 5 \mathrm{bar} / \mathrm{ms}$				
Switching point adjustment range:	$2 \ldots 100 \%$ of the nominal pressure range (Full Scale, FS), programmable at factory				
Hysteresis:	$0.2 \ldots 99.8$ \% of the nominal pressure range (FS), programmable at factory (set to $5 \%$ of the switching point as standard)				
Accuracy:	$\pm 0.5$ \% of the nominal pressure range (FS) at room temperature, $\pm 0.25$ \% BFSL				
Resolution:	0.1 \% of the nominal pressure range (FS)				
Switching delay:	ON ( $0 \ldots 0.5 \mathrm{~s}$ ) / OFF ( $0 \ldots 2 \mathrm{~s}$ ) delay in increments of 1 ms , irrespective of switching point, programmable at factory (specify value when ordering, otherwise default value of 0 s is set)				
Output:	0.5 A transistor output with short-circuit and overvoltage protection				
Operating mode:	With hysteresis or window mode, programmable at factory				
Long term stability:	$\pm 0.1$ \% FS p. a.				
Repeatability ${ }^{11}$ :	$\pm 0.1$ \% FS				
Temperature error ${ }^{1 /}$ :	$\pm 0.02$ \% / 1 K FS				
Compensated temperature range:	$-20^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F} \ldots+176{ }^{\circ} \mathrm{F}\right)$				
Temperature range media:	$-40^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F} \ldots+257^{\circ} \mathrm{F}\right)$				
Temperature range ambient:	$-40^{\circ} \mathrm{C} \ldots+100^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F} \ldots+212^{\circ} \mathrm{F}\right)$				
Wetted parts material:	Stainless steel 1.4305 (AISI 303) and titanium				
Housing material:	Stainless steel 1.4305 (AISI 303)				
Insulation resistance:	$>100 \mathrm{M} \Omega(500 \mathrm{VDC}, \mathrm{Ri}>42 \Omega)$				
Switching time:	$<2 \mathrm{~ms}$				
Vibration resistance:	20 g at $4 \ldots 2000 \mathrm{~Hz}$ sine wave; DIN EN 60068-2-6				
Shock resistance:	half sine wave $500 \mathrm{~m} / \mathrm{s}^{2} ; 11 \mathrm{~ms}$; DIN EN 60068-2-27				
Protection class:	Refer to the electrical connections				
EMC:	EMC 2014/30/EU, EN 61000-6-2:2005, EN 61000-6-3:2007				
Protection against reverse polarity, short-circuit and over voltage surges:	built-in				
Weight:	approx. 80 g (DIN 175301 approx. 110 g , cable version approx. 135 g )				

1) Within the compensated temperature range.
${ }^{2)}$ Static pressure. Dynamic value is 30 to $50 \%$ lower. Values refer to the hydraulic/pneumatic part of the electronic pressure switch.

## E. 5

hex 22
High Performance
1 switching output


## Connection diagrams

High Side Output (PNP)


Pin assignment depending on electr. connection * OUT2 only for 054x

Low Side Output (NPN)


Pin assignment depending on electr. connection *OUT2 only for 054 x

Technical modifications and errors excepted.

## 0530 / 0531 / 0532 / 0533

Electrical connectors and threads


Order number: 013

* without coupler socket $x \sim 60 \mathrm{~mm}$, with coupler socket $x \sim 76 \mathrm{~mm}$

DEUTSCH DT04-4P	
Pin	Assignment
1	Gnd
2	Uv+
3	nc
4	Out
IP67, IP6K9K	
$\mathbf{x} \sim 74 \mathrm{~mm}$	
$\mathbf{d} \sim \varnothing 23 \mathrm{~mm}$	
Order number: 008	





Order number: 002


Order number: 010




AMP Superseal


Pin	Assignment
1	Out
2	Gnd
3	Uv+
IP67	
$\mathbf{x} \sim 73 \mathrm{~mm}$	
d $\sim \varnothing 26 \mathrm{~mm}$	
Order number: 007	





## 0530 / 0531 / 0532 / 0533

Order matrix for electronic pressure switches

	Type	Pressure range	Pressure connection	Pressure unit	Electrical connection
Type	$\downarrow$	$\downarrow$	$\downarrow$	$\downarrow$	$\downarrow$
PNP output (High Side), NO	0530				
PNP output (High Side), NC	0531				
NPN output (Low Side), NO	0532				
NPN output (Low Side), NC	0533				


Max. overpressure ${ }^{2)}$	Burst pressure	Adjustment range ${ }^{1)}$	
40 bar	80 bar	$\begin{gathered} 0-10 \mathrm{bar} \\ \text { (approx. } 145 \mathrm{PSI} \text { ) } \end{gathered}$	101
100 bar	200 bar	$\begin{gathered} 0-25 \text { bar } \\ \text { (approx. } 362 \text { PSI) } \end{gathered}$	251
400 bar	800 bar	$\begin{gathered} 0-100 \mathrm{bar} \\ \text { (approx. 1,450 PSI) } \end{gathered}$	102
1,000 bar	2,000 bar	$\begin{aligned} & 0-250 \text { bar } \\ & \text { (approx. 3,620 PSI) } \end{aligned}$	252
1,650 bar	2,000 bar	0-600 bar (approx. 8,700 PSI)	602

Pressure connection


[^7]E. 5
hex 22
High Performance
1 switching output
E. 6
hex 22
High Performance 2 switching outputs

## Electronic pressure switches, High-Performance series

hex 22 with two switching outputs


- Outstanding overpressure protection (up to 4 x )
- Ideal choice for mobile hydraulic applications
- Long service life even under high pressure change rates
- Wetted parts made of stainless steel and titanium ensuring excellent media compatibility
- All welded design, no elastomeric seal
- Silicon-on-sapphire technology (SoS) for highest reliability, accuracy and reliable process monitoring
- Very low temperature error and very good long-term stability
- Adjustment of switching point and hysteresis at factory


## Technical details

Type	$\begin{aligned} & 0540 \text { NO / NO } \\ & 0541 \text { NC / NC } \\ & 0542 \text { NO / NC } \end{aligned}$			$\begin{aligned} & 0544 \mathrm{NO} / \mathrm{NO} \\ & 0545 \mathrm{NC} / \mathrm{NC} \\ & 0546 \mathrm{NO} / \mathrm{NC} \end{aligned}$	
Number of transistor outputs:	2 PNP outputs (High Side N-channel MOSFET)			2 NPN outputs (Low Side N-channel MOSFET)	
Supply voltage:	9.6-32 VDC				
Idle power consumption:	< 15 mA				
Standard-Adjustment range $\mathrm{p}_{\text {nom }}$ :	$0-10$ bar	0-25 bar	0-100 bar	$0-250$ bar	0-600 bar
Overpressure protection $\mathrm{p}^{\text {1 }}{ }^{1)}$ :	40 bar	100 bar	400 bar	1,000 bar	1,650 bar
Burst pressure ${ }^{1)}$ :	80 bar	200 bar	800 bar	2,000 bar	2,000 bar
Mechanical life expectancy:	10,000,000 pulsations at rise rates to $5 \mathrm{bar} / \mathrm{ms}$ at $\mathrm{p}_{\text {nom }}$				
Permitted pressure change rate:	$\leq 5$ bar / ms				
Switching point adjustment range:	$2 \ldots 100 \%$ of the nominal pressure range (Full Scale, FS), programmable at factory				
Hysteresis:	$0.2 \ldots 99.8 \%$ of the nominal pressure range (Full Scale, FS), programmable at factory ( $5 \%$ of the switching point is set as standard)				
Accuracy:	$\pm 0.5$ \% of the nominal pressure range (FS) at room temperature, $\pm 0.25$ \% BFSL				
Resolution:	0.1 \% of the nominal pressure range (FS)				
Switching delay:	ON ( $0 \ldots 0.5 \mathrm{~s}$ ) / OFF ( $0 \ldots 2 \mathrm{~s}$ ) delay in increments of 1 ms , irrespective of switching point, programmable at factory (specify value when ordering, otherwise default value of 0 s is set)				
Output:	0.5 A transistor output with short-circuit and overvoltage protection				
Long term stability:	$\pm 0.1$ \% FS p.a.				
Repeatability ${ }^{11}$ :	$\pm 0.1$ \% FS				
Temperature errorl):	$\pm 0.02$ / 1 K FS				
Compensated temperature range:	$-20^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F} \ldots+176{ }^{\circ} \mathrm{F}\right)$				
Temperature range media:	$-40^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F} \ldots+257^{\circ} \mathrm{F}\right)$				
Temperature range ambient:	$-40^{\circ} \mathrm{C} \ldots+100^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F} \ldots+212^{\circ} \mathrm{F}\right)$				
Wetted parts material:	Stainless steel 1.4305 (AISI 303) and titanium				
Housing material:	Stainless steel 1.4305 (AISI 303)				
Insulation resistance:	> $100 \mathrm{M} \Omega(500 \mathrm{VDC}, \mathrm{Ri}>42 \Omega$ )				
Switching time:	$<2 \mathrm{~ms}$				
Vibration resistance:	20 g at $4 \ldots 2000 \mathrm{~Hz}$ sine wave; DIN EN 60068-2-6				
Shock resistance:	half sine wave $500 \mathrm{~m} / \mathrm{s}^{2} ; 11 \mathrm{~ms}$; DIN EN 60068-2-27				
Protection class:	Refer to the electrical connections				
EMC:	EMC 2014/30/EU, EN 61000-6-2:2005, EN 61000-6-3:2007				
Short-circuit, overvoltage and reverse polarity protection	Built-in				
Weight:	approx. 80 g (DIN 175301 approx. 110 g , cable version approx. 135 g )				

[^8]${ }^{2)}$ Static pressure. Dynamic value is 30 to $50 \%$ lower. Values refer to the hydraulic/pneumatic part of the electronic pressure switch.

## E. 6

hex 22
High Performance 2 switching outputs


Connection diagrams
High Side Output (PNP)


Pin assignment depending on electr. connection * OUT2 only for 054x


Pin assignment depending on electr. connection *OUT2 only for 054x

Technical modifications and errors excepted.

## 0540/0541/0542/0544/0545/0546

Electrical connectors and threads


ISO 15170-A1-4.1	
Pin	Assignment
1	Uv+
2	Out 2
3	Gnd
4	Out 1
IP67, IP6K9K	
$\mathbf{x} \sim 65 \mathrm{~mm}$	
$\mathbf{d} \sim \varnothing 27 \mathrm{~mm}$	
Order number: 004	


Cable connection	
Cable	Assignment
brown	Uv+
white	Out 2
black	Out 1
blue	Gnd
IP67	
$\mathbf{x} \sim 44 \mathrm{~mm}$ (+ 20 mm bend relief) Cable length $\sim 2 \mathrm{~m}$	
d ~ $\varnothing 22 \mathrm{~mm}$	
Order number: 011	




## 0540/0541/0542/0544/0545/0546

Order matrix for electronic pressure switches

	Type	Pressure range	Pressure connection	Pressure unit	Electrical connection
Type	$\downarrow$	$\downarrow$	$\downarrow$	$\downarrow$	$\downarrow$
PNP output (High Side), NO / NO (NO/NO)	0540				
PNP output (High Side), NC / NC (NC/NC)	0541				
PNP output (High Side), NO / NC (NO/NC)	0542				
NPN output (Low Side), NO / NO (NO/NO)	0544				
NPN output (Low Side), NC / NC (NC/NC)	0545				
NPN output (Low Side), NO / NC (NO/NC)	0546				


Max.   overpressure ${ }^{2)}$
Burst   pressure
40 bar
100 bar
(adjustment
range ${ }^{1)}$

## Pressure connection

G 1/4 - DIN EN ISO 1179-2 (DIN 3852-11) form E	41
G 1/4 - DIN 3852-A	03
NPT 1/8	04
NPT 1/4	09
M 10x1 cyl. DIN 3852-A	30
$7 / 16-20$ UNF	20
$9 / 16-18$ UNF	21
M 14x1,5 - DIN EN ISO 9974-2 (DIN 3852-11) form E	42
	$\downarrow$


bar	B
Electrical connection	$\downarrow$


M 12 - DIN EN 61076-2-101 A		002	
Bayonet ISO 15170-A1-4.1 (DIN 72585-A1-4.1)		004	
Deutsch DT04-4P			008
Cable connection (length of cable 2 m standard)			

[^9]
## E. 6

hex 22
High Performance 2 switching outputs

## E. 7

## Accessories

Accessories


- High-quality accessories
- Developed for our products
- Aligned to our products
- Direct from the manufacturer


## Accessories

Mating plugs

Deutsch DT06-3S (for DT04-3P) $3 \times 0.5 \mathrm{~mm}^{2}$ PUR cable ( 2 m ), IP67	Suitable for connector code 010   Deutsch DT04-3P	Order number: $1-1-36-653-160$
TE AMP Superseal $1.5^{\oplus}$, 3-pin $3 \times 0.5 \mathrm{~mm}^{2}$ Radox cable (2 m), IP65	Suitable for connector code 007   AMP Superseal $1.5^{\circledR}$	Order number: 1-1-32-653-158
M12 DIN EN 61076-2-LF, 4-pin $4 \times 0.34 \mathrm{~mm}^{2}$ PUR cable (2 m), IP65	Suitable for connector code 002   M12 DIN EN 61076-2-101 A	Order number: 1-1-00-653-162

## E. 7

Accessories



Coupler socket		
M 12x1 DIN EN 61071-2-101 D	Suitable for connector code	Order number:
Angled, 4-pin   Terminals for wire diameter   $0.75 \mathrm{~mm}^{2}$ (AWG 18)	M12 DIN EN 61076-2-101 A	1-6-00-652-017



## Thread adapters

For requirements at short notice and for realising custom solutions

- The materials and shapes of thread adapters are aligned perfectly to our electronic pressure switches and transmitters
- Thread adapters are provided together with seals to ensure safe and easy installation of our electronic pressure switches and transmitters



[^0]:    1) Static pressure, dynamic pressure 30 to $50 \%$ lower. Values refer to the hydraulic or pneumatic part of the electronic pressure switch. 2) Within the compensated temperature range
[^1]:    1) Static pressure, dynamic pressure 30 to $50 \%$ lower. Values refer to the hydraulic or pneumatic part of the electronic pressure switch. 2) Within the compensated temperature range
[^2]:    ${ }^{1)}$ Static pressure, dynamic pressure 30 to $50 \%$ lower. Values refer to the hydraulic or pneumatic part of the electronic pressure switch.

[^3]:    1) Static pressure, dynamic pressure 30 to $50 \%$ lower. Value refers to the hydraulic or pneumatic part of the electronic pressure switch.
    2) Within the compensated temperature range
[^4]:    1) Static pressure, dynamic pressure 30 to $50 \%$ lower. Value refers to the hydraulic or pneumatic part of the electronic pressure switch.
[^5]:    RoHSII compliant

[^6]:    1) Static pressure, dynamic pressure 30 to $50 \%$ lower. Values refer to the hydraulic or pneumatic part of the electronic pressure switch.
[^7]:    1) Please state switching point and hysteresis when ordering
    2) Static pressure, dynamic pressure 30 to $50 \%$ lower. Value refers to the hydraulic or pneumatic part of the electronic pressure switch.
[^8]:    ${ }^{1)}$ Within the compensated temperature range.

[^9]:    1) Please state switching point and hysteresis when ordering.
    2) Static pressure, dynamic pressure 30 to $50 \%$ lower. Values refer to the hydraulic or pneumatic part of the electonic pressure switch.
